Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Ferreira, Gretta Rossi |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/104/104131/tde-01022018-100713/
|
Resumo: |
Em uma quantidade substancial de problemas de astronomia, tem-se interesse na estimação do valor assumido, para diversas funções g, de alguma quantidade desconhecida z ∈ ℜ com base em covariáveis x ∈ ℜd. Isto é feito utilizando-se uma amostra (X1, Z1), ... (Xn, Zn). As duas abordagens usualmente utilizadas para resolver este problema consistem em (1) estimar a regressão de Z em x, e plugar esta na função g ou (2)estimar a densidade condicional f (z Ι x) e plugá-la em ∫ g(z) f (z Ι x)dz. Infelizmente, poucos estudos apresentam comparações quantitativas destas duas abordagens. Além disso, poucos métodos de estimação de densidade condicional tiveram seus desempenhos comparados nestes problemas. Em vista disso, o objetivo deste trabalho é apresentar diversas comparações de técnicas de estimação de funções de uma quantidade desconhecida. Em particular, damos destaque para métodos não paramétricos. Além dos estimadores (1) e (2), propomos também uma nova abordagem que consistem em estimar diretamente a função de regressão de g(Z) em x. Essas abordagens foram testadas em diferentes funções nos conjuntos de dados DEEP2 e Sheldon 2012. Para quase todas as funções testadas, o estimador (1) obteve os piores resultados, exceto quando utilizamos florestas aleatórias. Em diversos casos, a nova abordagem proposta apresentou melhores resultados, assim como o estimador (2). Em particular, verificamos que métodos via florestas aleatórias, em geral, levaram a bons resultados. |