Filtragem adaptativa de imagens de radar de abertura sintética utilizando a abordagem maximum a posteriori

Detalhes bibliográficos
Ano de defesa: 1999
Autor(a) principal: Medeiros, Fátima Nelsizeuma Sombra de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-164749/
Resumo: Imagens de radar de abertura sintética (SAR) são tipicamente corrompidas pelo ruído \"speckle\" que também degrada imagens geradas por ultra-som, laser, etc. Esta tese propõe algoritmos de filtragem baseados na abordagem \"maximum a posteriori\" (MAP) para redução de \"speckle\" em imagens SAR. Na derivação dos filtros MAP, para imagens obtidas por detecção linear, são utilizadas as distribuições (condicionais) Rayleigh e raiz quadrada de gama na regra de Bayes como modelos para o ruído \"speckle\" em imagens SAR obtidas em amplitudes com 1 e múltiplas visadas, respectivamente, e usadas várias distribuições para o modelo \"a priori\". Toda a formulação dos algoritmos tem por base o modelo multiplicativo que constitui o modelo mais adequado ao \"speckle\". Propõe-se ainda neste trabalho a combinação dos filtros MAP formulados com o algoritmo k-médias e com a técnica de crescimento de regiões, como forma de melhoria da abordagem de filtragem proposta. Os resultados de filtragem foram avaliados segundo critérios (medidas) de melhoria da relação sinal-ruído e perda de resolução. O primeiro critério avalia a redução da intensidade do ruído \"speckle\" sobre regiões homogêneas e para avaliar a perda de resolução decorrente da filtragem é proposta uma nova técnica baseada na transformada de Hough. Os algoritmos foram testados em imagens artificialmente contaminadas por ruído \"speckle\" e em imagens SAR reais apresentando estatísticas Rayleigh e raiz de gama. Os resultados obtidos mostram a melhoria que proporcionam os algoritmos de filtragem MAP, especialmente quando combinados com o classificador k-médias e com a técnica de crescimento de região. O uso da técnica de crescimento de região reforça a conclusão de que o uso de vizinhança estatisticamente mais semelhante ao pixel ruidoso melhora a estimação dos parâmetros de filtragem. As medidas de desempenho e validação dos algoritmos MAP permitiram concluir que os filtros com distribuições \"a priori\" Gaussiana, gama, chi-quadrado e beta apresentaram melhores resultados de filtragem em relação aos demais modelos \"a priori\" quando comparados ao filtro de Kuan e com a técnica de \"wavelets\" para a classe de imagens utilizadas