Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Macedo, Osmar Jesus
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/
Resumo: Com o objetivo de avaliar o desempenho dos modelos mistos quando se assumem bases de funções ortonormais de Legendre, Jacobi modificadas e trigonométricas como covariáveis dos coeficientes aleatórios, os dados referentes à pesagem corporal de animais da raça Nelore do nascimento aos 800 dias, foram analisados com modelos que assumiram inicialmente coeficientes aleatórios de efeito genético direto e efeito permanente animal (dois fatores aleatórios), em seguida foi acrescentado o efeito genético materno (três fatores aleatórios) e finalmente assumiram-se também os coeficientes aleatórios de efeito permanente materno (quatro fatores aleatórios). Foram considerados como efeitos fixos, as idades da mãe ao parto, os grupos contemporâneos e uma regressão linear por polinômios de Legendre. Os dados oriundos da fazenda Mundo Novo fornecidos pelo Grupo de Melhoramento Animal da FZEA/USP continham 61.975 pesagens corporais de 20.543 animais e informações de 26.275 animais da raça Nelore no "pedigree". O número de pesagem por animal não ultrapassou a seis e cada animal forneceu apenas uma medida em cada um dos seguintes intervalos de idade (em dias): 1 – 69, 70 – 159, 160 – 284, 285 – 454, 455 – 589 e 590 – 800. O propósito desse estudo foi comparar o ajuste da curva média de crescimento dos animais por intermédio de modelos mistos sob influência das funções ortonormais com dois, três e quatro fatores aleatórios. Um segundo propósito do trabalho foi investigar o comportamento das curvas dos componentes aleatórios estimados por meio dos modelos selecionados em cada base de funções nos três grupos distintos de efeitos aleatórios e examinar o comportamento das curvas dos coeficientes de herdabilidade obtidas a partir das curvas dos componentes aleatórios. Por meio do aplicativo WOMBAT, as análises foram realizadas usando-se o algoritmo PX-AI. Em função da parcimônia, o critério de informação bayesiano de Schwarz (BIC) foi adotado para selecionar os modelos que melhor se adequaram aos dados, que em ordem crescente de seus valores foram: com dois fatores aleatórios, os modelos de Legendre com seis covariáveis (ML26), de Jacobi Modificado com cinco covariáveis (MJ25) e o trigonométrico com seis covariáveis (MT26); com três fatores aleatórios, os modelos com seis covariáveis (MJ36, ML36, MT36); e com quatro fatores aleatórios, os modelos de Jacobi Modificado com cinco covariáveis (MJ45), de Legendre com cinco covariáveis (ML45), e o trigonométrico com seis covariáveis (MT46). Dentre os nove modelos selecionados, o modelo com o menor BIC foi o modelo MJ36, porém o modelo MJ45 apresentou estimativas de componentes de variância muito próximas do modelo MJ36. As estimativas dos componentes de variância e dos coeficientes de herdabilidade obtidas pelos modelos com funções de Jacobi modificadas, nos extremos do intervalo, ficaram abaixo das obtidas pelos modelos com funções de Legendre e no interior do intervalo elas foram concordantes, ficando entre 0,2 e 0,3. As estimativas obtidas dos modelos com funções trigonométricas se diferenciaram dos demais e foram muito baixas no extremo do intervalo para modelos com mais de dois fatores aleatórios. A média das curvas de crescimento que mais se aproximou da tendência média dos dados em cada ponto do intervalo foi obtida pelo modelo MJ26.