Análise de variância utilizando ondaletas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Almeida, Deyvid Toledo Santiago de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-17092020-140359/
Resumo: Análise de Variância no contexto de séries temporais possui a inconveniência da presença de correlação entre as observações. Nessa dissertação, foram estudados métodos de análise de sinais, mais precisamente análise de Fourier e análise de ondaletas (Wavelets), que são ferramentas capazes de transformar o sinal original em uma nova entidade matemática descorrelacionada que possui domínio diferente do original, possibilitando a aplicação da análise de variância sem violar a hipótese de independência dessa metodologia. A diferença mais relevante entre as técnicas é que a análise de Fourier é própria para sinais estacionários, enquanto a análise de ondaletas é robusta a sinais não estacionários pelo fato de sua transformada possuir aspecto local. Na comparação dos resultados por meio de dados simulados, ambas as técnicas convergiram para um mesmo resultado. Para aplicação em dados, reais foram utilizadas medidas de Pico de Fluxo Expiratório (PFE) ao longo do tempo de crianças e adolescentes com condição asmática, ou não, e expostas ao fumo domiciliar, ou não. Na aplicação da ANOVA dois fatores, ambas as metodologias convergiram no teste de interação, mas ocorreram algumas divergências nos testes dos fatores isoladamente.