Uso de política abstrata estocástica na navegação robótica.

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Matos, Tiago
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-12122011-152445/
Resumo: A maioria das propostas de planejamento de rotas para robôs móveis não leva em conta a existência de soluções para problemas similares ao aprender a política para resolver um novo problema; e devido a isto, o problema de navegação corrente deve ser resolvido a partir do zero, o que pode ser excessivamente custoso em relação ao tempo. Neste trabalho é realizado o acoplamento do conhecimento prévio obtido de soluções similares, representado por uma política abstrata, a um processo de aprendizado por reforço. Além disto, este trabalho apresenta uma arquitetura para o aprendizado por reforço simultâneo, de nome ASAR, onde a política abstrata auxilia na inicialização da política para o problema concreto, e ambas as políticas são refinadas através da exploração. A fim de reduzir a perda de informação na construção da política abstrata é proposto um algoritmo, nomeado X-TILDE, que constrói uma política abstrata estocástica. A arquitetura proposta é comparada com um algoritmo de aprendizado padrão e os resultados demonstram que ela é eficaz em acelerar a construção da política para problemas práticos.