Resumo: |
Várias metodologias têm sido propostas com o intuito de medir a influência que a interação GxE exerce sobre os mais diversos caracteres de interesse e, dentre essas, as abordagens via modelos mistos utilizando REML/BLUP têm sido mencionadas como vantajosas. Ainda, o uso de informações ambientais pode ser útil para encontrar os fatores que estão por trás da real diferença entre os genótipos. O objetivo do estudo foi avaliar a resposta da produtividade de grãos em feijão-caupi frente às variações espaciais, e as variáveis ambientais mais relevantes para a interação GxE. Foram avaliados 20 genótipos em 47 locais entre os anos de 2010 a 2012 sob delineamento DBC. Após a análise conjunta, os padrões de adaptabilidade dos genótipos foram testados pelas metodologias GGE Biplot e MHPRVG e a estratificação ambiental foi feita via Análise de Fatores sobre a matriz dos efeitos aleatórios GGE. A importância das variáveis ambientais na produtividade foi verificada pela associação entre os efeitos da matriz GGE e cada variável ambiental. Após decomposição SVD, os componentes principais foram plotados em Covariáveis-Biplots. Os efeitos de genótipos e da interação tripla apresentaram elevada significância (p ≤ 0,01 e p ≤ 0,001, respectivamente) indicando forte influência desta última no desempenho dos genótipos avaliados. O modelo fixo GGE Biplot apresentou baixa eficiência, explicando apenas 35% da variação total, sendo os genótipos MNC03-737F-5-1, MNC03-737F-5- 4, MNC03-737F-5-9, BRS Tumucumaque, BRS Cauamé e BRS Guariba considerados os mais estáveis, e MNC03-737F-5-9 e BRS Tumucumaque apontados como amplamente adaptados. Já a estatística MHPRVG destacou os genótipos MNC02-676F-3, MNC03-737F-5-1, MNC03- 737F-5-9, BRS Tumucumaque e BRS Guariba, com adaptação ampla, e MNC02-675F-4-9, MNC02-676F-3 e MNC03-737F-5-9 como especificamente adaptados a alguns ambientes. O ajuste para o modelo aleatório revelou efeitos de genótipos e interações GxE significativos (p ≤ 0,001) e foram obtidas correlações significativas (p ≤ 0,01 e p ≤ 0,001) entre PROD e as variáveis IT, NDP, Ptotal, Tmax, Tmin, Lat, Lon, e Alt. Os genótipos MNC03-737F-5-1, MNC03-737F-5-9, BRS Tumucumaque e BRS Guariba associaram elevada produtividade de grãos à rusticidade, sendo as variáveis \"Temperatura\", \"Insolação\" e \"Precipitação\", bem como \"Latitude\" e \"Altitude\", os mais importantes para a interação GxE. A análise MHPRVG foi adequada para a identificação dos genótipos superiores e o modelo Biplot-Covariável mostrou-se como uma ferramenta útil na identificação das variáveis ambientais importantes para a produtividade de grãos em feijão-caupi. |
---|