Sistema automático para obtenção de parâmetros do tráfego veicular a partir de imagens de vídeo usando OpenCV

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Cunha, André Luiz Barbosa Nunes da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18144/tde-19112013-165611/
Resumo: Esta pesquisa apresenta um sistema automático para extrair dados de tráfego veicular a partir do pós-processamento de vídeos. Os parâmetros macroscópicos e microscópicos do tráfego são derivados do diagrama espaço-tempo, que é obtido pelo processamento das imagens de tráfego. A pesquisa fundamentou-se nos conceitos de Visão Computacional, programação em linguagem C++ e a biblioteca OpenCV para o desenvolvimento do sistema. Para a detecção dos veículos, duas etapas foram propostas: modelagem do background e segmentação dos veículos. Uma imagem sem objetos (background) pode ser determinada a partir das imagens do vídeo através de vários modelos estatísticos disponíveis na literatura especializada. A avaliação de seis modelos estatísticos indicou o Scoreboard (combinação de média e moda) como o melhor método de geração do background atualizado, por apresentar eficiente tempo de processamento de 18 ms/frame e 95,7% de taxa de exatidão. A segunda etapa investigou seis métodos de segmentação, desde a subtração de fundo até métodos de segmentação por textura. Dentre os descritores de textura, é apresentado o LFP, que generaliza os demais descritores. Da análise do desempenho desses métodos em vídeos coletados em campo, conclui-se que o tradicional método Background Subtraction foi o mais adequado, por apresentar o melhor tempo de processamento (34,4 ms/frame) e a melhor taxa de acertos totais com 95,1% de média. Definido o método de segmentação, foi desenvolvido um método para se definir as trajetórias dos veículos a partir do diagrama espaço-tempo. Comparando-se os parâmetros de tráfego obtidos pelo sistema proposto com medidas obtidas em campo, a estimativa da velocidade obteve uma taxa de acerto de 92,7%, comparado com medidas de velocidade feitas por um radar; por outro lado, a estimativa da taxa de fluxo de tráfego foi prejudicada por falhas na identificação da trajetória do veículo, apresentando valores ora acima, ora abaixo dos obtidos nas coletas manuais.