Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Melo, Cesar Adolfo Hernandez |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-23092019-135655/
|
Resumo: |
Este trabalho é dedicado a entender alguns aspectos matemáticos dos seguintes modelos não lineares: a equação de Schrödinger não linear com potência dupla, isto é iu t + u xx + u|u| 2 + u|u| 4 = 0, (1) e uma perturbação de tipo delta deste modelo, à saber, iu t + u xx + Z(x)u + u|u| 2 + u|u| 4 = 0. (2) Para o primeiro modelo em (1), usando a teoria de integrais elpticas de Jacobi e o teorema da função implcita, obtemos uma famlia de ondas estacionárias u(x, t) = e iwt w (x), onde w : R R é uma função positiva e periódica de perodo L > 0, conhecida como o perfil da onda. Para L , mostramos que as ondas esta- cionárias periódicas tendem uniformemente sobre intervalos compactos à onda so- litária. Usando uma extensão da teoria de Angulo&Natali assim como as idéias de- senvolvidas por Weinstein, Bona, Grillakis, Shatah e Strauss, mostramos estabilidade orbital desas ondas por perturbações do mesmo perodo que a onda. Por fim, provamos um resultado de instabilidade orbital por perturbações subharmônicas. Para o segundo modelo em (2), usando a onda solitária w,0 no caso em que Z = 0, obtemos duas famlias de picos solitários. Nós observamos que quando Z 0, temos que w,Z w,0 , onde w,0 denota a onda solitária. Então, usando a teoria de perturbação analtica para operadores lineares não limitados, obtemos um resultado detalhado da estabilidade orbital de picos solitários. Além disto, apresentamos alguns problemas naturais que podem ser resolvidos fu- turamente. Em particular, nós propomos uma nova abordagem para resolver questões de estabilidade linear de soluções de equilbrio para certo tipo de equações parabólicas. |