Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Estácio, Leonardo Bravo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19092014-102033/
|
Resumo: |
O método de Kaczmarz é um algoritmo iterativo que soluciona sistemas lineares do tipo Ax = b através de projeções sobre hiperplanos bastante usado em aplicações que envolvem a Tomografia Computadorizada. Recentemente voltou a ser destaque após a publicação de uma versão aleatória apresentada por Strohmer e Vershynin em 2009 a qual foi provada possuir taxa de convergência esperada exponencial. Posteriormente, Eldar e Needell em 2011 sugeriram uma versão modificada do algoritmo de Strohmer e Vershynin, na qual a cada iteração é selecionada a projeção ótima a partir de um conjunto aleatório, utilizando para isto o lema de Johnson-Lindenstrauss. Nenhum dos artigos mencionados apresenta uma técnica para a escolha do parâmetro de relaxação, entretanto, a seleção apropriada deste parâmetro pode ter uma influência substancial na velocidade do método. Neste trabalho apresentamos uma metodologia para a escolha do parâmetro de relaxação, bem como implementações paralelas do algoritmo de Kaczmarz utilizando as ideias de Eldar e Needell. Nossa metodologia para seleção do parâmetro utiliza uma nova generalização dos resultados de Strohmer e Vershynin que agora leva em consideração o parâmetro λ de relaxação e, a partir daí, obtemos uma estimativa da taxa de convergência como função de λ. Escolhemos então, para uso no algoritmo, aquele que otimiza esta estimativa. A paralelização dos métodos foi realizada através da plataforma CUDA e se mostrou muito promissora, pois conseguimos, através dela, um ganho significativo na velocidade de convergência |