Algoritmos evolutivos como estimadores de frequência e fase de sinais elétricos: métodos multiobjetivos e paralelização em FPGAs

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Silva, Tiago Vieira da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14012014-105606/
Resumo: Este trabalho propõe o desenvolvimento de Algoritmos Evolutivos (AEs) para estimação dos parâmetros que modelam sinais elétricos (frequência, fase e amplitude) em tempo-real. A abordagem proposta deve ser robusta a ruídos e harmônicos em sinais distorcidos, por exemplo devido à presença de faltas na rede elétrica. AEs mostram vantagens para lidar com tais tipos de sinais. Por outro lado, esses algoritmos quando implementados em software não possibilitam respostas em tempo-real para uso da estimação como relé de frequência ou Unidade de Medição Fasorial. O desenvolvimento em FPGA apresentado nesse trabalho torna possível paralelizar o cálculo da estimação em hardware, viabilizando AEs para análise de sinal elétrico em tempo real. Além disso, mostra-se que AEs multiobjetivos podem extrair informações não evidentes das três fases do sistema e estimar os parâmetros adequadamente mesmo em casos em que as estimativas por fase divirjam entre si. Em outras palavras, as duas principais contribuições computacionais são: a paralelização do AE em hardware por meio de seu desenvolvimento em um circuito de FPGA otimizado a nível de operações lógicas básicas e a modelagem multiobjetiva do problema possibilitando análises dos sinais de cada fase, tanto independentemente quanto de forma agregada. Resultados experimentais mostram superioridade do método proposto em relação ao estimador baseado em transformada de Fourier para determinação de frequência e fase