Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Santos, Anna Rita Marcondes dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11137/tde-09082016-155117/
|
Resumo: |
A seleção genômica (Genomic Selection - GS) permite identificar indivíduos superiores com base no seu método genômico e apresenta a possibilidade de incorporação do melhoramento quantitativo à genética molecular. O melhor preditor linear não viesado (Best Linear Unbiased Prediction - BLUP) é um método de predição dos efeitos aleatórios do modelo com base nos componentes de variância obtidos por meio do método máxima verossimilhança restrita (Restricted maximum likelihood - REML). A eficiência do REML\\BLUP pode ser incrementada por meio da incorporação de matrizes de parentesco genômico nos modelos de seleção genômica, uma vez que os efeitos genéticos genômicos aditivos dos indivíduos avaliados constituem os componentes aleatórios dos modelos mistos abordados. Dentre os algoritmos disponíveis para estimá-las, a partir de dados de polimorfismo de nucleotídeo único (Single-nucleotide polymorphism - SNP\'s) há as matrizes de Vanraden (2008) Astle e Balding (2009) e as de Yang et al. (2010) (matriz de parentesco unificado e matriz de parentesco unificado ajustado). Adicionalmente ao método de estimação da matriz de parentesco, a acurácia da GS depende da densidade de marcadores e da extensão e padrão de desequilíbrio de ligação (Linkage desequilibrium - LD) que existe no painel. Com isto, os objetivos foram: i) investigar o efeito da redução nas densidades de marcadores SNP\'s, por meio do LD, na estimativa do parentesco genético dos indivíduos e, consequentemente, na acurácia preditiva da GS; ii) estudar o efeito do uso de diferentes tipos de matrizes de parentesco genômico na acurácia da seleção genômica para linhagens e híbridos de milho tropical. Para isso, foram considerados dois painéis distintos de milho tropical: uma composta por 64 linhagens endogâmicas e a outra, por 452 híbridos. Estas foram avaliadas para o caráter produtividade de grãos, em oito e cinco ambientes, respectivamente. As linhagens e os híbridos foram genotipados com a plataforma Affymetrix® Axiom® Maize Genotyping Array, com cerca de 600 mil marcadores. Foram construídos diferentes cenários de GS quanto ao tipo de painel (linhagens e híbridos), densidade de marcadores (400k, 60k, 9586 e 1304 para linhagens e 50k, 4458 e 495, para híbridos) e tipos de matrizes de parentesco (citadas acima). Em cada um destes cenários foi estimada a herdabilidade, acurácia, capacidade preditiva e a coincidência de seleção. A partir dos resultados conclui-se que: tanto para híbridos como para linhagens, a densidade de marcas pode ser reduzida significativamente por meio do LD existente entre os SNP\'s, sem gerar prejuízos quanto à acurácia da GS, mas reduzindo os custos com genotipagem e a demanda computacional. Para predição genômica das linhagens, a matriz de Vanraden (2008) apresenta o melhor custo benefício, pois tem menor demanda computacional e proporciona resultados satisfatórios quanto à acurácia e coincidência de seleção. Para a predição genômica de híbridos, as matrizes de Yang et al. (2010) são superiores em relação às demais testadas, quanto à acurácia preditiva e coincidência de seleção. |