Constrained quadratic control of discrete-time hidden Markovian jump linear systems: the state feedback and static output scenarios.

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Andres Zabala, Yeison
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3139/tde-22022022-104313/
Resumo: In this thesis 2 global scenarios are considered for the constrained optimal control for hidden MJLS, where it is assumed that the controller only has access to a detector which emits signals b(k) providing information on the Markov parameter (k). The State Feedback Quadratic Control (first scenario) and Static Output Feedback Control (second scenario) problems are studied. Hence, they are obtained, via LMIs approach, feedback linear optimal controls so that the respective closed loop systems are stochastically stabilized, an upper-bound for the quadratic cost is minimized, and the constraints on the norm of the state and control variables are satis ed. The Finite Horizon and the Infinite Horizon cases as well as the maximization of the estimate of the domain of an invariant set for a fixed upper-bound of the cost function are also addressed. Finally, some numerical examples are presented for the purpose of illustrating the obtained results.