Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Hilasaca, Liz Maribel Huancapaza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-21082020-135049/
|
Resumo: |
Para a análise de Paisagens Acústicas os especialistas precisam conhecer os eventos em um determinado ambiente. Uma das formas de se adquirir esse conhecimento é através do som, isto é, de paisagens acústicas. Atualmente a tecnologia facilita as gravações de ambientes distintos, produzindo centenas de milhares de gravações de áudio todos os anos. Mas, a capacidade de análise desses sinais coletados continuamente é reduzida, sugerindo a necessidade de se automatizar esse processo, sendo necessário utilizar técnicas computacionais que auxiliem a rotulação, a exploração, a análise e o entendimento desses dados. Neste trabalho, é apresentada uma metodologia baseada em conceitos de ciência de dados, aprendizado máquina e visualização de informação, para identificar e validar um conjunto de caraterísticas mais discriminantes num ambiente de aprendizado ativo, de modo que se consiga segregar categorias de eventos de interesse em paisagens acústicas, isto é, grupos de eventos similares. Na primeira parte do trabalho foram identificadas e validadas características mais discriminantes, para isto, formulouse uma estrategia de ranking de importância de caraterísticas, no qual por meio da combinação das n primeiras caraterísticas do ranking permitiu determinar as caraterísticas mais discriminantes. Na segunda parte do trabalho foram validadas as caraterísticas discriminantes em um ambiente de aprendizado visual ativo, que incorpora a utilização de técnicas de projeção como t-SNE e UMAP para visualizar e analisar a segregação entre categorias de eventos da paisagem analisada. Além disso, a visualização de espectrogramas denominada Time-Line-Spectrogram foi incorporada para auxiliar as tarefas de rotulação do usuário no aprendizado ativo. Os resultados confirmam a efetividade das características para segregar categorias de eventos acústicos, no conjunto de dados real denominado Cantareira-Mantiqueira que trata de 3 categorias de eventos: anuros, pássaros e insetos. Na identificação de caraterísticas discriminantes os resultados de acurácia de classificação foram: 89:91% (com 30 caraterísticas para anuros, pássaros e insetos), 82:64% (com 30 caraterísticas para anuros e pássaros), 100:00% (com 46 caraterísticas para anuros e insetos) e 99:40% (com 14 caraterísticas para pássaros e insetos). Para a rotulagem de eventos sonoros com a metodologia visual de aprendizado ativo proposta, os resultados de acurácia atingidos utilizando as caraterísticas discriminantes e uma determinada configuração de parâmetros foram: 75:53% (para anuros, pássaros e insetos), 71:85% (para anuros e pássaros), 90:57% (para anuros e insetos) e 93:99% (para pássaros e insetos). |