Seleção de modelos para segmentação de sequências simbólicas usando máxima verossimilhança penalizada

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Castro, Bruno Monte de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-17042013-140839/
Resumo: O problema de segmentação de sequências tem o objetivo de particionar uma sequência ou um conjunto delas em um número finito de segmentos distintos tão homogêneos quanto possível. Neste trabalho consideramos o problema de segmentação de um conjunto de sequências aleatórias, com valores em um alfabeto $\\mathcal$ finito, em um número finito de blocos independentes. Supomos ainda que temos $m$ sequências independentes de tamanho $n$, construídas pela concatenação de $s$ segmentos de comprimento $l^{*}_j$, sendo que cada bloco é obtido a partir da distribuição $\\p _j$ em $\\mathcal^{l^{*}_j}, \\; j=1,\\cdots, s$. Além disso denotamos os verdadeiros pontos de corte pelo vetor ${{\\bf k}}^{*}=(k^{*}_1,\\cdots,k^{*}_)$, com $k^{*}_i=\\sum _{j=1}^l^{*}_j$, $i=1,\\cdots, s-1$, esses pontos representam a mudança de segmento. Propomos usar o critério da máxima verossimilhança penalizada para inferir simultaneamente o número de pontos de corte e a posição de cada um desses pontos. Também apresentamos um algoritmo para segmentação de sequências e realizamos algumas simulações para mostrar seu funcionamento e sua velocidade de convergência. Nosso principal resultado é a demonstração da consistência forte do estimador dos pontos de corte quando o $m$ tende ao infinito.