Detalhes bibliográficos
Ano de defesa: |
2000 |
Autor(a) principal: |
Bruni, Antonio de Castro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/6/6134/tde-25102010-183805/
|
Resumo: |
As informações ambientais são o resultado de uma complexa interação entre as condições dos ambientes natural e antropogênico. Sobre os processos envolvidos, na maioria das vezes há pouca ou nenhuma informação e, freqüentemente há carência de dados. Face a esta problemática o emprego de uma técnica que minimize a necessidade de tais dados, que não tenha restrições operacionais para a execução dos cálculos ou ainda que possa ser aplicada quando não há muito conhecimento sobre o equacionamento do problema, presponta como uma alternativa estratégica para a interpretação das informações ambientais. As técnicas de Inteligência Artificial lidam com estas restrições e, face aos recursos de software [aplicativos] e hardware [máquinas] hoje disponíveis, tiveram suas aplicações viabilizadas em diversas áreas. Neste trabalho conceituamos além das Redes Neurais, os Sistemas Fuzzy [Nebulosos] e sua lógica específica, os Algoritmos Genéticos - seu fundamento e aplicações - e finalizando, os Sistemas Neuro-Fuzzy. As principais Técnicas Estatísticas utilizadas em recentes trabalhos para a interpretação de dados são listadas e, sempre que necessário, são conceituadas. Apresentamos as Redes Neurais Artificiais não só como uma alternativa às Técnicas Estatísticas e outras abordagens, mas sim na complementação destas no trabalho de análise de dados. O emprego de ambas as técnicas no equacionamento dos problemas na área ambiental, como mostramos, garante os melhores resultados. vi Nas Ciências Atmosféricas apresentamos aplicações de Redes Neurais contemplando: o processo de reconhecimento de partículas, a identificação de partículas e de fontes de poluição atmosférica, no Balanço Químico de Massas, na interpretação de dados, na previsão de concentrações de poluentes e na análise de riscos à saúde. Os resultados das aplicações evidenciam o grande potencial que a técnica de Redes Neurais oferece para esta ciência. Face as características de distribuição espacial e temporal da poluição do ar pesquisamos e encontramos uma topologia de Rede Neural que se ajusta ao objetivo de previsão das concentrações horárias do monóxido de carbono na a cidade de São Paulo. Uma proposta de Sistema Inteligente baseado na teoria dos sistemas Fuzzy-Neurais também é apresentada para o mesmo problema. Uma relação dos aplicativos comerciais disponíveis no mercado para trabalhar com esta tecnologia é apresentada ao final. |