Processamento e análise de imagens histológicas de pólipos para o auxílio ao diagnóstico de câncer colorretal

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lopes, Antonio Alex
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59143/tde-16052019-171842/
Resumo: Segundo o Instituto Nacional do Câncer (INCA), o câncer de colorretal é o terceiro tipo de câncer mais comum entre os homens e o segundo entre as mulheres. Atualmente a avaliação visual feita por um patologista é o principal método utilizado para o diagnóstico de doenças a partir de imagens microscópicas obtidas por meio de amostras em exames convencionais de biópsia. A utilização de técnicas de processamento computacional de imagens possibilita a identificação de elementos e a extração de características, o que contribui com o estudo da organização estrutural dos tecidos e de suas variações patológicas, levando a um aumento da precisão no processo de tomada de decisão. Os conceitos e técnicas envolvendo redes complexas são recursos valiosos para o desenvolvimento de métodos de análise estrutural de componentes em imagens médicas. Dentro dessa perspectiva, o objetivo geral deste trabalho foi o desenvolvimento de um método capaz de realizar o processamento e a análise de imagens obtidas em exames de biópsias de tecidos de pólipo de cólon para classificar o grau de atipia da amostra, que pode variar em: sem atipia, baixo grau, alto grau e câncer. Foram utilizadas técnicas de processamento, incluindo um conjunto de operadores morfológicos, para realizar a segmentação e a identificação de estruturas glandulares. A seguir, procedeu-se à análise estrutural baseada na identificação das glândulas, usando técnicas de redes complexas. As redes foram criadas transformado os núcleos das células que compõem as glândulas em vértices, realizando a ligação dos mesmos com 1 até 20 arestas e a extração de medidas de rede para a criação de um vetor de características. A fim de avaliar comparativamente o método proposto, foram utilizados extratores clássicos de características de imagens, a saber, Descritores de Haralick, Momentos de Hu, Transformada de Hough, e SampEn2D. Após a avaliação do método proposto em diferentes cenários de análise, o valor de acurácia geral obtida pelo mesmo foi de 82.0%, superando os métodos clássicos. Conclui-se que o método proposto para classificação de imagens histológicas de pólipos utilizando análise estrutural baseada em redes complexas mostra-se promissor no sentido de aumentar a acurácia do diagnóstico de câncer colorretal