Redes neurais no uso de Teoria de Controle para a síntese de transformações unitárias em processamento quântico em contexto ruidoso

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Morazotti, Nícolas André da Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/76/76131/tde-16012024-093809/
Resumo: Esta tese de doutorado investiga a síntese de transformações unitárias em meio à presença de ruído de decoerência, por meio de uma integração de métodos geométricos e técnicas de aprendizado de máquina. O principal enfoque reside no uso de Teoria de Controle Quântico para obtenção de geodésicas do grupo SU(4) em que o ponto final é um elemento de SU(2) ⊗ II. Para desenvolver os pulsos ideais de controle, é lançada mão de técnicas de aprendizado de máquina para aprimorar tanto a qualidade quanto a quantidade de dados. Tais pulsos permitem obter transformações unitárias genéricas de um único qubit, ao mesmo tempo que atenua os efeitos prejudiciais do ruído de decoerência. Esse estudo possui relevância no âmbito da computação quântica, em que o ruído de decoerência pode prejudicar substancialmente a eficácia dos algoritmos quânticos, e destaca o potencial do aprendizado de máquina na otimização de dados para superar esse desafio. Além disso, a técnica demonstra promissoras aplicações em outros modelos de ruído, dinâmicas inerentes do sistema e diversos tipos de erros.