Uma abordagem de integração de dados de redes PPI e expressão gênica para priorizar genes relacionados a doenças complexas

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Simões, Sérgio Nery
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/95/95131/tde-17112015-172846/
Resumo: Doenças complexas são caracterizadas por serem poligênicas e multifatoriais, o que representa um desafio em relação à busca de genes relacionados a elas. Com o advento das tecnologias de sequenciamento em larga escala do genoma e das medições de expressão gênica (transcritoma), bem como o conhecimento de interações proteína-proteína, doenças complexas têm sido sistematicamente investigadas. Particularmente, baseando-se no paradigma Network Medicine, as redes de interação proteína-proteína (PPI -- Protein-Protein Interaction) têm sido utilizadas para priorizar genes relacionados às doenças complexas segundo suas características topológicas. Entretanto, as redes PPI são afetadas pelo viés da literatura, em que as proteínas mais estudadas tendem a ter mais conexões, degradando a qualidade dos resultados. Adicionalmente, métodos que utilizam somente redes PPI fornecem apenas resultados estáticos e não-específicos, uma vez que as topologias destas redes não são específicas de uma determinada doença. Neste trabalho, desenvolvemos uma metodologia para priorizar genes e vias biológicas relacionados à uma dada doença complexa, através de uma abordagem integrativa de dados de redes PPI, transcritômica e genômica, visando aumentar a replicabilidade dos diferentes estudos e a descoberta de novos genes associados à doença. Após a integração das redes PPI com dados de expressão gênica, aplicamos as hipóteses da Network Medicine à rede resultante para conectar genes sementes (relacionados à doença, definidos a partir de estudos de associação) através de caminhos mínimos que possuam maior co-expressão entre seus genes. Dados de expressão em duas condições (controle e doença) são usados separadamente para obter duas redes, em que cada nó (gene) dessas redes é pontuado segundo fatores topológicos e de co-expressão. Baseado nesta pontuação, desenvolvemos dois escores de ranqueamento: um que prioriza genes com maior alteração entre suas pontuações em cada condição, e outro que privilegia genes com a maior soma destas pontuações. A aplicação do método a três estudos envolvendo dados de expressão de esquizofrenia recuperou com sucesso genes diferencialmente co-expressos em duas condições, e ao mesmo tempo evitou o viés da literatura. Além disso, houve uma melhoria substancial na replicação dos resultados pelo método aplicado aos três estudos, que por métodos convencionais não alcançavam replicabilidade satisfatória.