Matter-wave interferometry for quantum sensing

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Pessoa Junior, Claudio Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-02052024-103633/
Resumo: This dissertation reports on advancements in the construction of a quantum sensor for gravimetry based on matter interferometry. Ultra-cold strontium atoms (in the order of 1 &mu;K) within a ring cavity in the bad cavity regime constitute the experimental setup and two distinct approaches were adopted for the comprehension of the systems operation. The first involved simulations of Ramsey-Bordé pulse sequence, specifically the &pi;/2-&pi;-&pi;/2-spin echo sequence using the 689 nm transition of strontium. The sequence is commonly employed in matter interferometers and the simulations provided insights for future measurements. The expected precision of our system is within &Delta;g/g < 10-8, showcasing its potential accuracy. The second approach focused on monitoring Bloch oscillations resulting from the interaction between atoms and cavity light, which induces a frequency proportional to the external force, in our case, gravity. Efforts were made during the experiment towards confirming the systems regime, leading to a significant observation of nonlinear Normal-mode splitting due to high saturation in the strong coupling regime, exhibiting a bi-stable behaviour.