Aspectos de complexidade em holografia

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Sá, Felipe Soares
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-07052018-140636/
Resumo: Recentemente, uma quantidade de informação/computação quântica chamada complexidade computacional tem adquirido mais e mais importância no estudo de buracos negros.Resumidamente, complexidade mede a dificuldade de alguma tarefa. No contexto de mecânica quântica (ou mesmo para estados em uma CFT), qualquer estado tem uma complexidade associada, uma vez que o processo de preparar algum estado, usando operações unitárias, é uma tarefa por sí só. Propostas holográficas para o cálculo de complexidade tem sido desenvolvidas nos anos recentes. Há duas delas que estão mais desenvolvidas: as conjecturas complexidade=volume e complexidade=ação. No contexto da correspondência AdS/CFT é sabido que o buraco negro de Schwarzschild em AdS é dual à um estado térmico que descreve duas CFTs emaranhadas. Para esse caso em específico, a conjectura complexidade=volume iguala a complexidade do estado que descreve esse par de CFTs emaranhadas com o volume da máxima superfície de codimensão um no espaço-tempo dual. Por outro lado, a conjectura complexidade=ação iguala a complexidade da borda com a ação gravitacional calculada sobre uma região do espaço-tempo conhecida como Wheeler-DeWitt patch. O objetivo dessa tese é proporcionar os requisitos necessários para entender as conjecturas relacionadas com complexidade, monstrando alguns resultados importantes proporcionados pelos cálculos holográficos no lado gravitacional.