Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Júnior, Enéas Alves Nogueira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-113811/
|
Resumo: |
Neste trabalho investigamos alguns aspectos da Lógica de Segunda Ordem, dividindo o tema em três capítulos. No primeiro capítulo discorremos sobre os conceitos básicos desta Lógica, tais como conjunto de fórmulas, sistemas dedutivos e semânticas. Fazemos também um contraste com a Lógica de Primeira Ordem, que é mais conhecida, para se ter uma espécie de modelo do qual estamos nos diferenciando. Provamos o teorema da completude para a Lógica de Segunda Ordem, devido a L. Henkin em Henkin (1950). No segundo capítulo nós procuramos entender o que acontece com a semântica da teoria de conjuntos ZF C (que é de primeira ordem) se adicionarmos alguns axiomas de segunda ordem, criando uma teoria que chamamos de ZF 2 . Mostramos um teorema devido a Zermelo (Zermelo (1930)) que diz que os modelos desta teoria são essencialmente os mesmos. Tam- bém procuramos investigar a questão da Hipótese do Contínuo com relação à de um metódo de forcing para esta teoria, mostramos que a HC ZF 2 e, através continua sem resposta. No terceiro capítulo, escrevemos sobre três temas diferentes: o primeiro é sobre a relação que existe entre a propriedade da completude, da compacidade e a semântica de Henkin. O teorema de Lindström, que provamos nesta seção, diz essencialmente que não podemos ter completude e compacidade para a Lógica de Segunda Ordem ao menos que usemos esta semântica. Na segunda seção, investigamos o número de Hanf da Lógica de Segunda Ordem com a semântica Padrão e, na terceira seção, mostramos que é possível fazer uma redução das Lógicas de ordem superior à segunda e que o conjunto das fórmulas válidas da Lógica de Segunda Ordem não é denível na estrutura dos números naturais. |