Caracterização de eventos de exceção e de seus respectivos impactos no sistema de transporte público por ônibus da cidade de São Paulo

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Dias, Felipe Cordeiro Alves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-10052019-181107/
Resumo: A cidade de São Paulo é o município mais populoso do Brasil, caracterizado por uma segregação urbana responsável por inúmeros problemas relacionados a mobilidade urbana. As ações atuais para resolver os problemas de mobilidade urbana têm pouco aprofundamento em questões tecnológicas e melhorias dos sistemas computacio- nais existentes como as necessárias ao Sistema Integrado de Monitoramento e Transporte (SIM), utilizado para gestão e monitoramento do transporte público por ônibus de São Paulo. Uma das possíveis melhorias é integrar o SIM às Redes Sociais. Com essa perspectiva de integração, esse trabalho tem como objetivo uti- lizar tweets e dados do SIM na caracterização de eventos de exceção e de seus respectivos impactos no sistema de transporte público por ônibus da cidade de São Paulo. Para alcançar tal objetivo, esse trabalho propõe utilizar tweets publicados por instituições governamentais responsáveis por reportar eventos de exceção, dados dos módulos AVL (Automatic Vehicle Location) do SIM, responsáveis por rastrear e localizar os ônibus do município e GTFS (General Transit Feed Specification) da SPTrans. Visando alcançar o objetivo proposto, classificamos manualmente 60.984 tweets e treinamos diferentes modelos por meio de algoritmos de aprendizado de máquina supervisionado para identificar eventos de exceção. Além disso, propomos uma nova metodologia para extrair e geolocalizar os endereços dos eventos de exceção, por meio de Processamento de Língua Natural e Expressão Regular. Com isso, demonstramos que é possível correlacionar os dados desses eventos com os dados históricos do SIM e da GTFS, para caracterizar como o transporte público por ônibus da cidade de São Paulo é impactado nesses cenários. Adicionalmente, propomos uma arquitetura distribuída para exploração e visualização de grandes volumes de dados relacionados a transporte público