Modelagem termodinâmica do equilíbrio líquido-líquido em sistemas compostos por ácido acético, água e éster aplicando métodos numéricos e aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Siqueira, Felipe Ribeiro de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/97/97139/tde-07122022-122426/
Resumo: A modelagem termodinâmica tem sido uma importante alternativa às práticas experimentais no teste de hipóteses e predição de propriedades de misturas, pois economiza tempo e capital. Neste trabalho, foram experimentados dois modelos para modelagem do equilíbrio de fases líquido-líquido: um modelo de energia de Gibbs em excesso, o modelo NRTL, e um modelo de aprendizado de máquina, regressão por florestas aleatórias. O objetivo foi comparar a performance de ambos na predição da composição das fases existentes na extração do ácido acético de soluções aquosas, compostas por uma mistura envolvendo um acetato, água e ácido acético. Para tanto, foram coletados dados de sistemas ternários compostos por água, ácido acético e por quatro diferentes ésteres, sendo eles os acetatos de butila, isobutila, amila e isoamila. Para o modelo NRTL, foram determinados conjuntos de parâmetros de interação binária por regressão e foi feita a aplicação destes parâmetros na predição das composições das fases em equilíbrio. Já para o modelo de florestas aleatórias, buscou-se um conjunto de hiperparâmetros capazes de treinar os modelos sem produzir superajuste e predizer as composições das fases em equilíbrio. Como resultado, foi observado que o modelo de florestas aleatórias possui algumas vantagens sobre o modelo NRTL, sendo possível fazer a predição de composições sem especificar o éster presente no sistema. Para alguns casos aqui expostos, o modelo NRTL não foi capaz de realizar a regressão, resultando em uma composição trivial e distante da experimental.