Segmentação de vasos sangüíneos em imagens de retina usando wavelets e classificadores estatísticos

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Soares, João Vitor Baldini
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-24072007-174800/
Resumo: Esta dissertação apresenta o desenvolvimento e avaliação de um método para a segmentação de vasos sangüíneos em imagens de retina, em que se usa a transformada wavelet contínua bidimensional combinada com classificação supervisionada. A segmentação dos vasos é a etapa inicial para a análise automática das imagens, cujo objetivo é auxiliar a comunidade médica na detecção de doenças. Entre outras doenças, as imagens podem revelar sinais da retinopatia diabética, uma das principais causas de cegueira em adultos, que pode ser prevenida se detectada em um diagnóstico precoce. A abordagem apresentada consiste na geração de segmentações pela classificação supervisionada de pixels nas classes \"vaso\" e \"não vaso\". As características usadas para classificação são obtidas através da transformada wavelet contínua bidimensional usando a wavelet de Gabor. Resultados são avaliados nos bancos públicos DRIVE e STARE de imagens coloridas através da análise ROC (\"receiver operating characteristic\", ou característica de operação do receptor). O método atinge áreas sob curvas ROC de 0.9614 e 0.9671 nos bancos DRIVE e STARE, respectivamente, ligeiramente superiores àquelas apresentadas por outros métodos do estado da arte. Apesar de bons resultados ROC, a análise visual revela algumas dificuldades do método, como falsos positivos ao redor do disco óptico e de patologias. A wavelet de Gabor mostra-se eficiente na detecção dos vasos, superando outros filtros lineares. Bons resultados e uma classificação rápida são obtidos usando o classificador bayesiano em que as funções de densidade de probabilidade condicionais às classes são descritas por misturas de gaussianas. A implementação do método está disponível na forma de \"scripts\" código aberto em MATLAB para pesquisadores interessados em detalhes de implementação, avaliação ou desenvolvimento de métodos.