Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Lemos, Felipe Kesrouani |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3136/tde-11072014-121631/
|
Resumo: |
A presente pesquisa tem como objetivo estudar a integração entre dois temas clássicos da literatura de pesquisa operacional e gestão de operações: problemas de corte e empacotamento; e problemas de programação da produção. Ainda que sejam duas áreas intensamente exploradas e pesquisadas, e, ainda, que seja uma situação facilmente encontrada em sistemas de produção reais, abordagens de ambos problemas de forma coordenada ainda carecem de maiores pesquisas. Neste trabalho é feita uma revisão de ambos temas, com foco em problemas de bin packing e programação em ambiente de máquina única com objetivo de minimizar soma de atrasos e adiantamentos ponderados. Uma formulação matemática linear e inteira mista é proposta para o problema, contemplando as restrições que concernem a cada um e também à sua consideração simultânea. Como se trata de um problema que une dois outros, cada um NP-hard isoladamente, um método heurístico é proposto para obter uma solução interessante em tempos computacionais bastante reduzidos. Foram obtidas propriedades físicas de definição de data ideal de programação de um conjunto de itens atribuídos a um bin. Também é proposto um método para geração de um limitante inferior melhorado em relação a pacotes de otimização de mercado para o problema. Ambos métodos foram testados em uma massa de dados de 1.152 instâncias, geradas para retratar cenários de diferentes datas de entrega, setups, custos de atraso e adiantamento em relação à matéria-prima, tamanho de itens e número de itens na instância. Os resultados mostram-se largamente superiores aos obtidos por um otimizador genérico (CPLEX), embora ainda sejam gaps excessivamente grandes, o que reforça a dificuldade do problema. |