Deep learning em dois estágios para detecção e classificaçãode doenças em folhas de plantas com aplicação em dispositivos móveis

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Leite, Tiago de Miranda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02022022-121135/
Resumo: Deep learning é uma técnica do ramo de aprendizado de máquina que tem obtido grandes resultados em diversas tarefas, quando comparada às demais técnicas da área. Dentre tais tarefas, detecção e classificação de objetos em imagens destacam-se como exemplos notáveis de sucesso. Normalmente, nesse tipo de aplicação, uma única rede neural convolucional realiza o processo de detecção das regiões de interesse, delimitando assim a área que contém o objeto a ser identificado, bem como a classificação dessa região em uma classe. A fim de melhorar os resultados na detecção e classificação de áreas de doenças em imagens de folhas de plantas, este projeto tem como objetivo investigar uma abordagem que utiliza redes neurais convolucionais compostas por dois estágios independentes, um para realizar a detecção e outro a classificação das referidas regiões de doenças, por meio de aprendizado supervisionado. Para validar a abordagem, foram realizados experimentos com três diferentes conjuntos de dados compostos por imagens de folhas de macieira, afetadas por doenças como ferrugem e sarna, com a tarefa de detectar e classificar as regiões de doenças. Os resultados indicam que a abordagem de dois estágios tende a melhorar a precisão média da detecção em imagens de diferentes conjuntos de dados, além de permitir uma melhor transferência de aprendizado quando conjuntos de dados não vistos são usados para teste. Esta abordagem também permite maior flexibilidade na escolha de redes de detecção e classificação para adequar o modelo a cenários específicos. Além disso, as visualizações dos mapas de características dos modelos indicam que as redes de dois estágios apresentam mapas com regiões de ativação mais acentuadas, facilitando a interpretação dos resultados. Por fim, este trabalho também mostrou ser possível a utilização de tais redes neurais por meio de um protótipo de aplicativo para dispositivos móveis (como smartphones e tablets), permitindo um diagnóstico instantâneo das doenças e a criação de uma base colaborativa de novas imagens, bem como difundindo o uso da tecnologia pela população em geral.