Análise experimental de algoritmos de constância de cor e segmentação para detecção de mudas de plantas

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Perissini, Ivan Carlos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18149/tde-25052018-095947/
Resumo: O uso da visão computacional vem ganhando espaço no contexto agrícola, especialmente com a evolução do conceito da agricultura de precisão. Aplicações como irrigação, fertilização e controle de pragas são apenas alguns dos cenários que essa tecnologia pode atender. Entretanto, a demanda por sistemas acessíveis e eficientes aliada às inconstâncias e ruídos visuais de um ambiente externo, apresentam desafios a estes processos. Foi proposto neste trabalho uma análise da literatura e uma série de investidas experimentais de técnicas de processamento de imagens, para buscar melhores relações entre custo computacional e desempenho da detecção de mudas de plantas, visando atingir operações em tempo real com o uso de hardwares comuns e de baixo custo. Para tanto o trabalho investiga a composição de estratégias de segmentação a partir de diferentes espaços de cor e métodos de constância de cor, de forma a reduzir a variação luminosa, uma das maiores fontes de instabilidade nas aplicações de visão na agricultura. Os experimentos propostos foram divididos em duas fases; na primeira o sistema de medidas foi avaliado, definindo as métricas e condições experimentais adequadas para a segunda fase, composta de uma sequência de experimentos comparativos entre estratégias de segmentação sob diferentes condições de iluminação. Os resultados mostraram que as soluções são muito dependentes das condições da cena e uma série de alternativas promissoras de segmentação foram obtidas. Sua elegibilidade, porém, depende de considerações sobre a disponibilidade computacional e contexto de aplicação.