PCA-tree: uma proposta para indexação multidimensional

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Bernardina, Philipe Dalla
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-29082007-114522/
Resumo: Com o vislumbramento de aplicações que exigiam representações em espaços multidimensionais, surgiu a necessidade de desenvolvimento de métodos de acessos eficientes a estes dados representados em R^d. Dentre as aplicações precursoras dos métodos de acessos multidimensionais, podemos citar os sistemas de geoprocessamento, aplicativos 3D e simuladores. Posteriormente, os métodos de acessos multidimensionais também apresentaram-se como uma importante ferramenta no projeto de classificadores, principalmente classificadores pelos vizinhos mais próximos. Com isso, expandiu-se o espaço de representação, que antes se limitava no máximo a quatro dimensões, para dimensionalidades superiores a mil. Dentre os vários métodos de acesso multidimensional existentes, destaca-se uma classe de métodos baseados em árvores balanceadas com representação em R^d. Estes métodos constituem evoluções da árvore de acesso unidimenisonal B-tree e herdam várias características deste último. Neste trabalho, apresentamos alguns métodos de acessos dessa classe de forma a ilustrar a idéia central destes algoritmos e propomos e implementamos um novo método de acesso, a PCA-tree. A PCA-tree utiliza uma heurística de quebra de nós baseada na extração da componente principal das amostras a serem divididas. Um hiperplano que possui essa componente principal como seu vetor normal é definido como o elemento que divide o espaço associado ao nó. A partir dessa idéia básica geramos uma estrutura de dados e algoritmos que utilizam gerenciamento de memória secundária como a B-tree. Finalmente, comparamos o desempenho da PCA-tree com o desempenho de alguns outros métodos de acesso da classe citada, e apresentamos os prós e contras deste novo método de acesso através de análise de resultados práticos.