Um método baseado em inteligência computacional para a geração automática de casos de teste de caixa preta.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Sá, Hindenburgo Elvas Gonçalves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-29112010-153615/
Resumo: Este trabalho de dissertação apresenta um método baseado em técnicas de inteligência computacional, como aprendizado de conjunto de regras, redes neurais artificiais e lógica fuzzy, para propor o desenvolvimento de ferramentas capazes de gerar e classificar casos de testes de caixa preta com as finalidades de auxiliar na atividade de preparação de testes, na detecção de defeitos em características ou funcionalidades e na diminuição do tempo de detecção de correção do software visando, com isto, atingir uma cobertura de testes qualitativamente superior ao processo criação manual. A obtenção de novos casos de testes e a classificação dos casos de testes gerados utilizam técnicas de aprendizado de um conjunto de regras, utilizando algoritmos de cobertura seqüencial, e de uma máquina de inferência fuzzy. A definição dos métodos, tanto para gerar como para classificar os casos de testes, foram fundamentados em experimentos visando comparar as similaridades entre os métodos fuzzy, redes neurais artificiais e aprendizado de conjunto de regras. Por fim, procurou-se desenvolver uma ferramenta à titulo de prova de conceitos objetivando aplicar os métodos que obtiveram melhores resultados nas experimentações. Os critérios adotados para definir os métodos foram às métricas de complexidade ciclomática e total de linhas de código (LOC).