Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Viveros, Henry Pizarro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/18/18149/tde-20052020-121847/
|
Resumo: |
As inúmeras aplicações industriais mostram a grande importância de máquinas rotativas nas diversas etapas do sistema produtivo e também as sérias consequências econômicas por eventuais mau funcionamento. O mancal é o elemento principal que define as características dinâmicas de máquinas rotativas e são projetados para trabalhar em determinada faixa de operação que em situações imprevistas pode não ser as mais apropriadas. Através do controle ativo é possível alterar as características dinâmicas do mancal e reduzir possíveis instabilidades do sistema melhorando a faixa de operação. Nesse intuito, é proposto o algoritmo de controle preditivo neural (Neural Network Model Predictive Control-NNMPC) que precisa de uma identificação neural da planta para predizer as saídas futuras do sistema e assim resolver o problema de otimização quadrática para calcular os sinais de controle ótimos. Assim, será controlado o deslocamento do rotor sob uma trajetória de referência. O primeiro algoritmo estudado foi o NNMPC-SISO. O processo de identificação neural do sistema foi realizado a partir de dados numéricos do sistema obtidos das equações não-lineares representadas em Simulink para uma velocidade de rotação fixa de 30 Hz (1800 rpm). O segundo algoritmo estudado foi o NNMPCMIMO. Para a identificação multivariável da planta, utilizaram-se dados experimentais obtidos da bancada de testes para diferentes amplitudes de excitação a uma velocidade de rotação fixa de 20 Hz (1200 rpm). Esta identificação foi mediante uma rede neural NARX MIMO que utilizou as entradas de excitação u1 e u2 e novas entradas adaptadas as formas das equações não-lineares do sistema. Os resultados do algoritmo NNMPC-SISO mostraram que para a identificação o número de neurônios necessários foi de 10 e o algoritmo de treinamento foi o Levenberg-Marquardt. O controle do deslocamento do rotor sob a trajetória de referência foi aceitável mesmo em condições de perturbação externa ou velocidades de rotação no consideradas no treinamento da rede neural (20 e 40 Hz). Os resultados do algoritmo NNMPC-MIMO para a identificação multivariável mostraram que o incremento de entradas resultou numa melhoria significativa no processo de identificação porque conseguiu-se melhorar a generalização do conhecimento das características não-lineares da planta. Para tanto, foram necessários 20 neurônios e o algoritmo de treinamento Regularização Bayesiana. Já o controle foi capaz de manter o deslocamento do rotor na trajetória de referência em qualquer quadrante desejado mesmo considerando o distúrbio por desbalanço e o ruído. |