SOBRE BIFURCAÇÃO E SIMETRIA EM EQUAÇÕES NÃO LINEARES

Detalhes bibliográficos
Ano de defesa: 1991
Autor(a) principal: Galante, Luiz Fernandes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55131/tde-27112018-154151/
Resumo: Neste trabalho estudamos existência bifurcação e simetrias de soluções especiais de equações não-lineares da forma: (1) Lx = N(x, p, ε) + μf, as quais são equivariantes sob a aço de certos grupos de simetrias. Assumimos que a equação (1) esta definida num espaço de Banach X, f é um elemento fixo de um espaço de Banach Z, L é um operador linear e continuo de X em Z, N é um operador não linear, p, μ e ε são pequenos parâmetros. Sob certas hipóteses mostramos que simetrias do termo forçante implicam em simetrias das pequenas soluções da equação acima. Discutimos também a genericidade da principal hipótese deste trabalho. Alguns exemplos envolvendo equações diferenciais ordinárias e parciais são analisados.