Dinâmicas de propagação de informações e rumores em redes sociais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Oliveros, Didier Augusto Vega
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13092017-102818/
Resumo: As redes sociais se tornaram um novo e importante meio de intercâmbio de informações, ideias e comunicação que aproximam parentes e amigos sem importar as distâncias. Dada a natureza aberta da Internet, as informações podem fluir muito fácil e rápido na população. A rede pode ser representada como um grafo, onde os indivíduos ou organizações são o conjunto de vértices e os relacionamentos ou conexões entre os vértices são o conjunto de arestas. Além disso, as redes sociais representam intrinsecamente a estrutura de um sistema mais complexo que é a sociedade. Estas estruturas estão relacionadas com as características dos indivíduos. Por exemplo, os indivíduos mais populares são aqueles com maior número de conexões. Em particular, é aceito que a estrutura da rede pode afetar a forma como a informação se propaga nas redes sociais. No entanto, ainda não está claro como a estrutura influencia na propagação, como medir seu impacto e quais as possíveis estratégias para controlar o processo de difusão. Nesta tese buscamos contribuir nas análises da interação entre as dinâmicas de propagação de informações e rumores e a estrutura da rede. Propomos um modelo de propagação mais realista considerando a heterogeneidade dos indivíduos na transmissão de ideias ou informações. Nós confirmamos a presença de propagadores mais influentes na dinâmica de rumor e observamos que é possível melhorar ou reduzir expressivamente a difusão de uma informação ao selecionar uma fração muito pequena de propagadores influentes. No caso em que se objetiva selecionar um conjunto de propagadores iniciais que maximizem a difusão de informação, a melhor opção é selecionar os indivíduos mais centrais ou importantes nas comunidades. Porém, se o padrão de conexão dos vértices está negativamente correlacionado, a melhor alternativa é escolher entre os indivíduos mais centrais de toda a rede. Por outro lado, através de abordagens topológicas e de técnicas de aprendizagem máquina, identificamos aos propagadores menos influentes e mostramos que eles atuam como um firewall no processo de difusão. Nós propomos um método adaptativo de reconexão entre os vértices menos influentes para um indivíduo central da rede, sem afetar a distribuição de grau da rede. Aplicando o nosso método em uma pequena fração de propagadores menos influentes, observamos um aumento importante na capacidade de propagação desses vértices e da rede toda. Nossos resultados vêm de uma ampla gama de simulações em conjuntos de dados artificiais e do mundo real e a comparação com modelos clássicos de propagação da literatura. A propagação da informação em redes é de grande relevância para as áreas de publicidade e marketing, educação, campanhas políticas ou de saúde, entre outras. Os resultados desta tese podem ser aplicados e estendidos em diferentes campos de pesquisa como redes biológicas e modelos de comportamento social animal, modelos de propagação de epidemias e na saúde pública, entre outros.