Processamento, extração de características e análise morfométrica automatizada de fibras mielínicas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Novas, Rômulo Bourget
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/95/95131/tde-20230725-114645/
Resumo: A análise morfométrica de fibras mielínicas é conhecida por produzir informação rele- vante para a avaliação de diversos fenômenos. Esta análise pode ser realizada manualmente ou por meio do uso de sistemas de análise de imagens. Contudo, processos manuais são trabalhosos, tediosos e demorados, e sistemas semiautomáticos não são viáveis para populações muito grandes de fibras. Neste trabalho desenvolvemos um ambiente computacional para segmentação, extração e análise de características morfométricas de fibras mielínicas de maneira automatizada. Os nervos utilizados neste trabalho foram o nervo vestibulococlear,recorrente laríngeo, sural, vago e frênico. Para segmentação foram desenvolvidos dois métodos distintos, testados para cada um dos nervos utilizados. O primeiro se baseia numa análise a nível estruturante da imagem, relacionando-se principalmente com características como forma e tamanho das fibras. O segundo se baseia na análise de cor da imagem, onde é realizado um agrupamento dos pixels de acordo um conjunto de características que representam cores. Adicional- mente, foram desenvolvidas diversas rotinas no ambiente computacional que permitem a realização automatizada da morfometria de fibras mielínicas, que auxiliam na análise morfométrica por meio da geração de histogramas de um conjunto de métricas que permitem a comparação entre diferentes histogramas. Em busca de verificar e validar as métricas utilizadas foi realizado um estudo comparativo entre populações de fibras extraídas de ratos com diabetes, controle e tratados com insulina, onde foi possível identificar as principais alterações morfométricas ocasionadas pela diabetes e pela atuação da insulina reduzindo parte dessas discrepâncias. O ambiente computacional desenvol- vido obteve, em comparação à morfometria efetuada manualmente por especialistas, uma similaridade de área de 90,8% e sensitividade de 93.1%, demonstrando grande potencial em aplicações experimentais e clínicas, permitindo a otimização dos processos relacionados à análise morfométrica de fibras mielínicas.