Redes neurais artificiais auto-organizáveis na classificação não-supervisionada de imagens multiespectrais de sensoriamento remoto

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Pádua, Christopher Silva de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-05012017-153701/
Resumo: O uso de imagens provenientes de sensores remotos, tal como sistemas acoplados em aviões e satélites, é cada vez mais frequente, uma vez que permite o monitoramento continuo e periódico ao longo do tempo por meio de diversas observações de uma mesma região, por vezes ampla ou de difícil acesso. Essa ferramenta tem se mostrado importante e significativa em aplicações como o mapeamento de solo e fronteiras; acompanhamento de áreas de desmatamento, queimadas e de produção agrícola. Para gerar resultados interpretáveis ao usuário final, essas imagens devem ser processadas. Atualmente, o método de classificação por máxima verossimilhança é o mais empregado para classificação de imagens multiespectrais de sensores remotos, entretanto, por se tratar de uma técnica supervisionada, seus resultados dependem extensivamente da qualidade do conjunto de treinamento, utilizado para definir os parâmetros do método. A seleção de um bom conjunto de treinamento é um processo custoso e inviabiliza a automação da classificação para diversas imagens. O método de classificação por máxima verossimilhança é também paramétrico e portanto exitem algumas suposições quanto a distribuição dos dados que devem ser atendidas, caso contrário a aplicação do método pode gerar resultados ruins. Tendo em vista essas desvantagens do método da máxima verossimilhança, este trabalho propõe um novo método para a classificação de imagens multiespectrais provenientes de sensores remotos de forma que o procedimento seja autônomo, veloz e preciso, minimizando dessa forma os possíveis erros humanos inseridos em etapas intermediárias do processo, tal como a definição de conjuntos de treinamento. O método aqui proposto pertence ao conjunto das redes neurais artificiais (RNAs) e é denominado growing neural gas (GNG). Este método baseia-se no aprendizado não supervisionado de padrões \"naturais\" dentro de um conjunto de dados por meio da criação e adaptação de uma rede mínima de neurônios. Os resultados gerados a partir da classificação pela RNA foram comparados com os métodos mais utilizados na literatura atual, sendo eles o método da máxima verossimilhança e o método k-means. A partir da biblioteca espectral ASTER, mantida e criada parcialmente pela NASA, foram realizadas várias repetições do experimento, que consiste em classificar os dados de acordo com as diferentes classes existentes, e para cada uma destas repetições calculou-se uma medida de acurácia, denominada índice kappa, além do tempo de execução de cada método, de forma que suas médias foram comparadas via intervalo de confiança gerados por bootstrap não paramétrico. Também investigou-se como a análise de componentes principais (ACP), técnica utilizada para reduzir a dimensão dos dados e consequentemente o custo computacional, pode influenciar no desempenho dos métodos, tanto em sua qualidade de classificação quanto em relação ao tempo de execução. Os resultados mostram que o método proposto é superior nos dois aspectos estudados, acurácia e tempo de execução, para a maioria dos fatores aplicados. Mostra-se ainda um exemplo de aplicação prática em que uma imagem multiespectral de satélite não satisfaz as pré-suposições estabelecidas para o uso do método da máxima verossimilhança e verifica-se a diferença entre os métodos com relação a qualidade final da imagem classificada.