Detalhes bibliográficos
Ano de defesa: |
1995 |
Autor(a) principal: |
Favoretti, Adriana de Cassia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24042018-155451/
|
Resumo: |
Dada uma função holomorfa f : Cn+1 → C com f(0) = 0 e, O é uma singularidade isolada, a hipersuperfície de nível f-1 (0) na vizinhança de O, Dε ∩ f-1 (0) é homeomorfo ao cone com base K = Sε ∩ f-1 (0). Logo o estudo de K é essencial para o entendimento de hipersuperfície de nível na vizinhança de zero, sob um ponto de vista topológica. A aplicação Φ = f / &Iota ; f Ι : Sε - K → S1, é a projeção de um fibrado localmente trivial denominado de Fibração de Milnor e a sua fibra F0= Φ-1 (1) tem o tipo de homotopia de um bouquet de esferas SnvSnv...vSn . Para um difeomorfismo específico h : F0 → F0, o polinômio característico Δ (t) de h* : Hn (F0) → Hn (F0 é um invariante de K, e se n ≠ 2 então K é homeomorfo a esfera de dimensão 2n -1 se, e somente se Δ (1) = ±1. Nesta dissertação, estudaremos K nos casos em que n=1 e nos casos em que f é da forma f(z1, z2,...,zn+1) = za11 + za22 + ...+ zan+1n+1 onde ai \' s são inteiros maiores que 1 (polinômio de Brieskorn). Também analizaremos Δ (t) e Δ (1) para o caso em que f seja polinômio de Brieskorn ou um polinômio f para a qual existam racionais positivos {w1, w2, ..., wn+1} tal que f(ec/w1z1, ec/w2,... ec/wn+1 zn+1) = ec/f(z1, z2,..., zn+1), para todo c ∈ C (polinômio quase-homogêneo). |