Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Almeida Neto, Fernando Gonçalves de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3142/tde-06052011-142814/
|
Resumo: |
Uma forma de se reduzir o custo (em termos tanto de área de chip quanto de consumo de energia) de algoritmos de processamento de sinais é empregar aritmética de ponto fixo, usando o menor número de bits possível para se representar as variáveis e coeficientes necessários. Com isso, consegue-se reduzir a complexidade do hardware, levando a economias de energia e de área de chip em circuitos dedicados. A escolha do nível de quantização a que cada variável deve ser submetida depende de se conhecer o efeito da quantização de cada variável nas saídas do sistema, o que pode ser conseguido através de simulações (em geral lentas) ou por métodos analíticos. Este documento propõe avanços a uma nova metodologia de análise de algoritmos para processamento digital de sinais implementados em aritmética de ponto fixo, usando modelos baseados em cadeias de Markov. As contribuições desta dissertação são as seguintes: Filtros IIR de primeira e de segunda ordem são analisados via cadeia de Markov, pressupondo que a entrada possui uma função densidade de probabilidade conhecida. O modelo é desenvolvido de forma geral, de forma que pode ser considerada uma função de densidade de probabilidade qualquer. A saída dos filtros é usada para definir os estados da cadeia. O modelo via cadeia de Markov para o coeficiente do algoritmo LMS unidimensional é estendido para entrada correlacionada. Nesse caso, os estados passam a ser descritos em termos do coeficiente e do da entrada anterior. Um exemplo assumido função de densidade de probabilidade de entrada gaussiana para o filtro adaptativo é apresentado. |