Método Zero-Variance para Monte Carlo Hamiltoniano aplicado a modelos GARCH univariados e multivariados

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Paixão, Rafael Soares
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-21072021-163951/
Resumo: Este trabalho de doutorado desenvolve, compara e aplica métodos Monte Carlo via Cadeias de Markov (MCMC) para estimação de parâmetros em modelos GJR-GARCH univariados e multivariados. Especificamente, os seguintes problemas são abordados: (i) concepção de uma abordagem de estimação puramente bayesiana; (ii) desenvolvimento de um método bayesiano para maior eficiência computacional na estimação de parâmetros; e (iii) escolha flexível de distribuições de probabilidade de resíduos para modelos GJR-GARCH. Como resultado das investigações dos problemas mencionados, este trabalho apresenta quatro contribuições. A primeira diz respeito a uma abordagem de inferência bayesiana para modelos GJR-GARCH univariados e multivariados. A segunda consiste no estudo de três distribuições de probabilidade de resíduos, uma delas tendo sido utilizada de forma inovadora para casos multivariados. A terceira combina duas técnicas, o algoritmo Hamiltoniano Monte Carlo (HMC) e o método Zero-Variance, para possibilitar a estimação de parâmetros em modelos GJR-GARCH com maior eficácia dos estimadores, bem como com maior eficiência computacional. Por fim, a quarta apresenta resultados de estudos de simulação e de uma aplicação em dados reais, no contexto de índices de bolsas de valores mundiais, mostram que as contribuições propostas solucionam os problemas abordados eficaz e eficientemente, avançando o estado da arte de modelos GARCH univariados e multivariados.