Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Paixão, Rafael Soares |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-21072021-163951/
|
Resumo: |
Este trabalho de doutorado desenvolve, compara e aplica métodos Monte Carlo via Cadeias de Markov (MCMC) para estimação de parâmetros em modelos GJR-GARCH univariados e multivariados. Especificamente, os seguintes problemas são abordados: (i) concepção de uma abordagem de estimação puramente bayesiana; (ii) desenvolvimento de um método bayesiano para maior eficiência computacional na estimação de parâmetros; e (iii) escolha flexível de distribuições de probabilidade de resíduos para modelos GJR-GARCH. Como resultado das investigações dos problemas mencionados, este trabalho apresenta quatro contribuições. A primeira diz respeito a uma abordagem de inferência bayesiana para modelos GJR-GARCH univariados e multivariados. A segunda consiste no estudo de três distribuições de probabilidade de resíduos, uma delas tendo sido utilizada de forma inovadora para casos multivariados. A terceira combina duas técnicas, o algoritmo Hamiltoniano Monte Carlo (HMC) e o método Zero-Variance, para possibilitar a estimação de parâmetros em modelos GJR-GARCH com maior eficácia dos estimadores, bem como com maior eficiência computacional. Por fim, a quarta apresenta resultados de estudos de simulação e de uma aplicação em dados reais, no contexto de índices de bolsas de valores mundiais, mostram que as contribuições propostas solucionam os problemas abordados eficaz e eficientemente, avançando o estado da arte de modelos GARCH univariados e multivariados. |