Approximate local influence in generalized linear mixed models

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Noguera, Sergio Alexander Gomez
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-05022020-190820/
Resumo: Non-Gaussian correlated data are frequent in longitudinal and repeated measure studies. Generalized linear mixed models (GLMMs) are a powerful tool for the analysis and treatment of this kind of data. Residual and sensitivity analysis are useful diagnostic procedures to verify the assumptions made on these models and the adequacy to the data. Among the techniques included in the sensitivity analysis is the local influence, which allows to discriminate observations with a undue weight in the parameter estimates of any statistical model. In this work we present approximated analytical structures for local influence measurements in generalized linear mixed models. These structures were obtained through Laplace approximations for usual perturbation schemes in order to discriminate observations and subjects with excessive influence on the parameter estimates. These measures, which are presented in closed forms for the generalized linear mixed models, have a relatively low computational cost and have been shown to be effective in detection of influential observations and subjects as evidenced by simulation studies and analyses of three real data sets.