Sistemas mecânicos e lagrangeanos com vínculos não-lineares

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Terra, Gláucio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-120554/
Resumo: Neste trabalho são estudados sistemas mecânicos e sistemas lagrangeanos vinculados. Um vínculo L na variedade diferenciável de M, chamada espaço de configurações, é uma subvariedade mergulhada do espaço de fase das velocidades TM, tal que a restrição da projeção do fibrado tangente Tm : TM -> M a L seja uma submersão. As trajetórias de tais sistemas são definidas e analisadas através de generalizações das formulações e resultados existentes no caso em que L é um vínculo linear nas velocidades, i.e., um subfibrado vetorial do fibrado tangente Tm : TM -> M. O princípio de D¦Alembert e o princípio da ação estacionária de Hamilton (através do qual se define a chamada mecânica vakonômica) são generalizados, e são analisadas propriedades dos sistemas dinâmicos obtidos. No caso particular em que a lagrangeana L é a energia cinética induzida pelo tensor métrico da variedade riemanniana (M, g), obtém-se uma generalização da geometria sub-riemanniana