Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Terra, Gláucio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45132/tde-20220712-120554/
|
Resumo: |
Neste trabalho são estudados sistemas mecânicos e sistemas lagrangeanos vinculados. Um vínculo L na variedade diferenciável de M, chamada espaço de configurações, é uma subvariedade mergulhada do espaço de fase das velocidades TM, tal que a restrição da projeção do fibrado tangente Tm : TM -> M a L seja uma submersão. As trajetórias de tais sistemas são definidas e analisadas através de generalizações das formulações e resultados existentes no caso em que L é um vínculo linear nas velocidades, i.e., um subfibrado vetorial do fibrado tangente Tm : TM -> M. O princípio de D¦Alembert e o princípio da ação estacionária de Hamilton (através do qual se define a chamada mecânica vakonômica) são generalizados, e são analisadas propriedades dos sistemas dinâmicos obtidos. No caso particular em que a lagrangeana L é a energia cinética induzida pelo tensor métrico da variedade riemanniana (M, g), obtém-se uma generalização da geometria sub-riemanniana |