Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Teixeira, Raphael Levy Ruscio Castro |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12052018-195714/
|
Resumo: |
Neste trabalho estudamos uma rede hexagonal com uma cadeia de impurezas nas bordas e com supercondutividade induzida, de forma a mostrar a existência de fases com férmions de Majorana. Para tal, começamos introduzindo invariantes topológicos, número de Chern e Z2 e mostramos dois modelos para rede hexagonal. O primeiro, modelo de Haldane, fazemos como motivação histórica. O segundo, modelo de Kane-Mele, é usado como base para todo o trabalho. Seguimos introduzindo supercondutividade e como ela ocorre quando aplicada junto do Modelo de Kane-Mele, o método auto-consistente e quais as condições necessárias para termos supercondutividade apenas nas bordas. Continuamos com efeitos de impurezas magnéticas nas bordas e introduzimos férmions de Majorana que são os alvos principais dos resultados. Mostramos então, que existe fases topológicas em cadeias de impureza magnética, com momentos em espiral, contudo o diagrama de fase depende de várias condições. Por fim, mostramos que a variação da fase topológica se deve a oscilações nos níveis de energia em que o invariante topológico também varia, contrariando resultados obtidos para a rede quadrada. Concluímos esse trabalho com implicações experimentais desse resultado e possíveis caminhos que podem ser seguidos. |