Detalhes bibliográficos
Ano de defesa: |
1996 |
Autor(a) principal: |
Scavone, André Pasquale Rocco |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3142/tde-22082024-101705/
|
Resumo: |
O uso de modelos ocultos de Markov (HMM) na tarefa de reconhecimento de voz tem sido objeto de extensa pesquisa. Esses modelos utilizam dois processos estatísticos inter-relacionados: enquanto um modelo a variabilidade dos ritmos de emissao, o outro representa a diversidade dos fenômenos acústicos da fala. Este segundo processo permitiria também absorver as características de diferentes vozes. Este trabalho estuda o uso dos modelos ocultos de Markov através da implementação de um sistema de reconhecimento de vocabulário restrito. O sistema utiliza a análise por coeficientes de predição linear e quantização vetorial para representar o sinal de voz por uma sequência de símbolos que estima os parâmetros dos modelos. Os resultados obtidos com um locutor confirmam a capacidade de representação desses modelos. No entanto, o desempenho do sistema se reduz consideravelmente quando aplicado a diversos locutores. Algumas alternativas são propostas no sentido de melhorar o desempenho do sistema, sem atingir grande exito. As soluções para a independência do locutor apontam para métodos adaptativos que preservem a versatilidade dos HMM. |