Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Fuks, Willian Jean |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3152/tde-22052014-232901/
|
Resumo: |
Com o avanço da internet, novos tipos de negócios surgiram. Por exemplo, o sistema de anúncios online: produtores de sites e diversos outros conteúdos podem dedicar em uma parte qualquer de sua página um espaço para a impressão de anúncios de diversas lojas em troca de um valor oferecido pelo anunciante. É neste contexto que este trabalho se insere. O objetivo principal é o desenvolvimento de algoritmos que preveem a probabilidade que um dado usuário tem de se interessar e clicar em um anúncio a que está sendo exposto. Este problema é conhecido como predição de CTR (do inglês, \"Click-Through Rate\") ou taxa de conversão. Utiliza-se para isto uma abordagem baseada em regressão logística integrada a técnicas de fatoração de matriz que preveem, através da obtenção de fatores latentes do problema, a probabilidade de conversão para um anúncio impresso em dado site. Além disto, testes considerando uma estratégia dinâmica (em função do tempo) são apresentados indicando que o desempenho previamente obtido pode melhorar ainda mais. De acordo com o conhecimento do autor, esta é a primeira vez que este procedimento é relatado na literatura. |