Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Fonseca, Eder Lucio da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/100/100132/tde-07052012-230908/
|
Resumo: |
Séries temporais financeiras, como índices de mercado e preços de ativos, são produzidas por interações complexas dos agentes que participam do mercado. As propriedades fractais e multifractais destas séries fornecem evidências para detectar com antecedência a ocorrência de movimentos bruscos de mercado (crashes). Tais evidências são obtidas ao aplicar o conceito de Calor Específico Análogo C(q), proveniente da equivalência entre a Multifractalidade e Termodinâmica. Na proximidade de um crash, C(q) apresenta um ombro anômalo à direita de sua curva, enquanto que na ausência de um crash, possui o formato parecido com uma distribuição gaussiana. Com base neste comportamento, o presente trabalho propõe um novo indicador temporal IA(i), definido como a taxa de variação da área sob a curva de C(q). O indicador foi construído por intermédio de uma janela temporal de tamanho s que se movimenta ao longo da série, simulando a entrada de dados na série ao longo do tempo. A análise de IA(i) permite detectar com antecedência a ocorrência de grandes movimentos, como os famosos crashes de 1929 e 1987 para os índices Dow Jones, S&P500 e Nasdaq. Além disso, a análise simultânea de medidas como a Energia Livre, a Dimensão Multifractal e o Espectro Multifractal, sugerem que um crash de mercado se assemelha a uma transição de fase. A robustez do método para diferentes ativos e diferentes períodos de tempo, demonstra a importância dos resultados. Além disso, modelos estatísticos não lineares para a volatilidade foram empregados no trabalho para estudar grandes flutuações causadas por crashes e crises financeiras ao longo do tempo. |