Comparação empírica dos modelos Cox, log-binominal e Poisson para estimar razões de prevalência

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Coutinho, Letícia Maria Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/5/5137/tde-19022009-113657/
Resumo: Introdução: Em estudos de corte transversal com desfechos binários, a associação entre a exposição e o desfecho é estimada pela razão de prevalência (RP). Os modelos de regressão de Cox, log-binomial e Poisson têm sido sugeridos como bons métodos estatísticos para obter estimativas da RP ajustadas para variáveis de confusão. Objetivo: Comparar empiricamente as regressões de Cox, log-binomial, Poisson e logística para desfechos com alta prevalência, prevalência intermediária e baixa prevalência. Metodologia: Os dados foram obtidos de um estudo epidemiológico de corte transversal, de base populacional, sobre prevalência de demência e outros transtornos mentais em idosos residentes em aéreas de baixa renda da cidade de São Paulo. O diagnóstico de demência (prevalência baixa), a ocorrência de transtorno mental comum (prevalência intermediária) e a auto-percepção de saúde ruim (alta prevalência) foram escolhidos como desfechos para o estudo. Valores de referência da estimativa da razão de prevalência (RP) foram obtidos pela estratificação de Mantel-Haenszel. Estimativas da RP ajustada foram calculadas usando modelos de regressão de Cox, log-binomial e Poisson, além do OR bruto e do OR ajustado pela regressão logística. Resultados: As estimativas do ponto e do intervalo obtidas com as regressões de Poisson e Cox, com variância robusta, se aproximaram muito bem dos resultados obtidos pela estratificação de Mantel-Haenszel, independentemente da prevalência inicial do desfecho, e permitiram controlar para covariáveis contínuas. O modelo log-binomial se comportou ligeiramente pior que os modelos de Cox e Poisson quando o desfecho teve uma prevalência alta, com dificuldade de convergência. A regressão logística produziu estimativas do ponto e do intervalo sempre mais elevadas do que aquelas obtidas pelos outros métodos, e estas estimativas eram particularmente mais elevadas quando o desfecho era freqüente. Conclusão: Os modelos de regressão de Cox e Poisson, com variância robusta, são boas alternativas à regressão logística. Quanto ao modelo de regressão log-binomial, deve-se ficar atento às restrições referentes ao seu uso, pois apresenta estimativas um pouco mais distantes das geradas pelos demais métodos quando o risco inicial do desfecho de interesse é alto e apresenta também dificuldade de convergência quando temos uma covariável contínua no modelo. Ao analisar as associações em estudos de corte-transversal, os pesquisadores devem usar métodos de regressão que forneçam estimativas do ponto e do intervalo adequadas independente da prevalência do desfecho em estudo.