Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Nardari, Guilherme Vicentim |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18042023-163053/
|
Resumo: |
Enquanto dados de sobrevoo podem fornecer informações gerais sobre uma floresta, no interior da mata é possível identificar plantas do sub-bosque, medir o diâmetro e contar os troncos de cada árvore. Atualmente, essas medições dependem de expedições humanas, que podem ser lentas, caras e até perigosas. Portanto, robôs capazes de navegar e extrair dados do interior da mata de forma autônoma têm o potencial de revolucionar a forma como as florestas são monitoradas em todo o mundo, aumentando a quantidade e qualidade das informações obtidas. No contexto de florestas, algoritmos clássicos desenvolvidos para ambientes urbanos podem falhar devido à falta de sinal confiável de GPS, terrenos irregulares, plantas e folhas que cobrem o terreno, além das árvores que balançam com o vento. Isso ocorre porque as suposições feitas pelos algoritmos clássicos podem não ser válidas nesse ambiente. No entanto, informações semânticas, como classes e formas de objetos esperados no ambiente são uma opção promissora para aumentar a robustez e o desempenho de sistemas autônomos. Nesta tese é apresentado um framework que utiliza informações semânticas derivadas de algoritmos de aprendizado de máquina dos dados de sensores carregados por um veículo aéreo não tripulado. O framework desenvolvido é capaz de identificar árvores e modelá-las como cilindros, criando um mapa semântico. A formulação adotada possibilita a incorporação de estimativas ruidosas que podem ser refinadas com a chegada de novas leituras dos sensores e de medidas externas para aumentar a robustez do sistema. A partir do mapa semântico gerado, é proposto um algoritmo capaz de gerar descritores únicos de locais em florestas que visualmente são extremamente similares. Tais descritores permitem o reconhecimeno de locais já visitados, e podem ser utilizados pelo framework para reduzir o erro acumulado nas estimativas de localização. Os resultados obtidos em experimentos em ambientes simulados e em florestas de Pinus do mundo real, demonstram que os métodos desenvolvidos geram mapas semânticos que melhoram a qualidade das estimativas de localização do robô e geram mapas informativos. Ademais, a representação semântica dos dados obtidos pelos sensores é mais eficiente computacionalmente, pois resume os dados brutos em um modelo geométrico semântico com poucos parâmetros. |