Certas deformacoes nao-comutativas do toro e sua k-teoria

Detalhes bibliográficos
Ano de defesa: 1993
Autor(a) principal: Cerri, Cristina
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-113155/
Resumo: Para cada 'ALFA' > 'OU IGUAL' 0 define-se 'B ALFA' como sendo a c*-algebra gerada por dois unitarios 'U IND.ALFA' e um auto-adjunto 'H IND.ALFA' tais que 'MODULO IND.ALFA MODULO' < 'OU IGUAL' 'ALFA' e 'U IND.ALFA' 'V IND.ALFA' 'U* IND.ALFA' 'V* IND.ALFA' = 'E POT.IH 'alfa'. NESTE TRABALHO PROVAMOS QUE A FAMILIA ('b ind.Alfa') 'ind.Alfa' 'pertence' [0 'infinito'] ESTENDE A FAMILIA DOS SOFT TORUS COM AS MESMAS PROPRIEDADES BASICAS, ISTO E, QUE PARA CADA 'alfa ind.0' O CAMPO DE C*-ALGEBRA (B 'ind.Alfa') 'alfa' 'pertence' [0, 'alfa' ZERO] E CONTINUO E CADA B 'ind.Alfa' E PRODUTO CRUZADO DE UMA C*-ALGEBRA HOMOTOPICAMENTE EQUIVALENTE AC ('s pot.1') POR Z. MOSTRAMOS ENTAO QUE OS K-GRUPOS DE 'b alfa' SAO ISOMORFOS A Z 'soma direta' Z. APLICANDO RESULTADOS DA TERIA DAS ALGEBRAS DE ROTACAO DEMONSTRAMOS QUE TODO ELEMENTO POSITIVO (N,M) DE 'k ind.0' ('b ind.Alfa') SATISFAZ /M/'alfa' < 'ou igual' 2 'pi' n. Como consequencia segue que estas c*-algebras nao sao todas homotopicamente equivalentes entre si, apesar de terem os mesmos k-grupos