Anisotropic shear viscosity and critical behavior of non-hydrodynamic quasinormal modes in strongly coupled plasmas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Siqueira, Maicon Zaniboni
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-16082017-161531/
Resumo: In this thesis we use the holographic gauge/gravity duality to study two different aspects of strongly coupled non-Abelian plasmas. In the first topic we study the effects of strong (Abelian) magnetic fields on the transport coefficients of a strongly coupled non-Abelian plasma. Due to the spatial anisotropy created by the magnetic field, the most general viscosity tensor of a magnetized plasma has 5 shear viscosity coefficients and 2 bulk viscosities. We use the holographic correspondence for a strongly coupled N=4 Supersymmetric Yang-Mills (SYM) plasma to evaluate the shear viscosity perpendicular to the magnetic field and the shear viscosity parallel to the field. In the presence of a magnetic field, the shear viscosity perpendicular to the field saturates the Kovtun-Son-Starinets viscosity bound while in the direction parallel to the field the bound is violated. The second topic investigated in this thesis is motivated by the study of the near equilibrium behavior of strongly interacting non-Abelian plasmas that display a critical point in their phase diagram. We focus on the spectra of non-hydrodynamic quasinormal modes of a strongly coupled N=4 SYM plasma in the presence of a chemical potential, which displays a critical point in equilibrium. Except close to the critical point, we observe that by increasing the chemical potential one generally increases the damping rate of the quasinormal modes, which leads to a reduction of the characteristic equilibration times in the dual strongly coupled plasma. However, as one approaches the critical point the typical equilibration time increases though its derivative with respect to the chemical potential diverges with an exponent equal to -1/2. We also find a purely imaginary non-hydrodynamical mode in the vector diffusion channel at nonzero chemical potential which dictates the equilibration time in this channel near the critical point.