Algoritmo colaborativo baseado em fatoração multifrontal QR para estimação de trajetória de alvos com redes de sensores sem fio.

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Mendoza Quiñones, Daniel Igor
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-26072013-121613/
Resumo: As redes de sensores sem fio (RSSF) são uma tecnologia que ganhou muita importância nos últimos anos. Dentro das diversas aplicações para essas redes, o rastreamento de alvos é considerado essencial. Nessa aplicação, a RSSF deve determinar, de forma colaborativa, a trajetória de um ou mais alvos que se encontrem dentro de sua área de cobertura. O presente trabalho apresenta um algoritmo colaborativo baseado na fatoração multifrontal QR para estimação de trajetórias de alvos com RSSF. A solução proposta está inserida no âmbito da estimação por lotes, na qual os dados são coletados pelos sensores durante a aplicação e só no final é realizada a estimativa da trajetória do alvo. Uma vez coletados os dados, o problema pode ser modelado como um sistema de equações sobredeterminado Ax = b cuja característica principal é ser esparso. A solução desse sistema é dada mediante o método de mínimos quadrados, no qual o sistema é transformado num sistema triangular superior, que é solucionado mediante substituição inversa. A fatoração multifrontal QR é ideal neste contexto devido à natureza esparsa da matriz principal do sistema. A fatoração multifrontal QR utiliza um grafo denominado árvore de eliminação para dividir o processo de fatoração de uma matriz esparsa em fatorações densas de pequenas submatrizes denominadas matrizes frontais. Mapeando a árvore de eliminação na RSSF consegue-se que essas fatorações densas sejam executadas pelos nós sensoriais que detectaram o alvo durante seu trajeto pela rede. Dessa maneira, o algoritmo consegue realizar a fatoração da matriz principal do problema de forma colaborativa, dividindo essa tarefa em pequenas tarefas que os nós de sensoriais da rede possam realizar.