Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Santos, Khennedy Bacule dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12072024-113349/
|
Resumo: |
Milhares de pessoas sofrem com o câncer, tornando-a uma das doenças que mais matam pessoas ao redor do mundo. Esta doença se carateriza por modificações na estrutura do DNA, o que impacta na produção descontrolada das células. Neste estudo abordamos uma predição da sobrevida para pacientes com câncer de mama nos estágios I, II e III, levando em consideração informações clinicas e genéticas. Para isto, o método de Cox, uma regressão capaz de estimar a função de risco, é usada para predizer a sobrevida dos pacientes. Devido a alta dimensionalidade da informação genética e as limitações do modelo Cox, são abordados métodos para a redução dos dados. Abordamos três maneiras para a redução de dimensionalidade, consistindo na penalização lasso na regressão de Cox, seleção por similaridade na expressão genética, com o algoritmo de agrupamento K-means, e a redução da dimensionalidade por meio da rede neural AutoEncoder, baseado nos grupos de similaridade. A partir dos experimentos, constatamos que a informação genética colabora para a criação de melhores preditores, em que as três abordagens de redução da dimensionalidade, apresentaram um melhor C-index, quando comparado ao método abordando apenas informações clinicas. Ao decorrer desta pesquisa, também verificamos que o material genético, além de aumentar o risco da sobrevida em alguns casos, há ocorrência do efeito de proteção. Ao final, propomos baseado nos resultados obtidos, uma possível evolução para a criação de um método capaz de otimizar o erro na predição da sobrevida, interpretar suas decisões e lidar com a alta dimensionalidade dos dados. |