Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Neves, Ruan Felipe de Oliveira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/76/76132/tde-02092021-160652/
|
Resumo: |
Nas últimas décadas, tem havido um crescente interesse na detecção precoce das doenças que afetam as culturas agrícolas a fim de evitar grandes perdas econômicas devido à contaminação de novas plantas. Dentre essas doenças as que mais se destacam e são mais letais para a citricultura são o cancro cítrico e greening, ambas ameaçando produções do mundo todo, incluindo regiões do Brasil e dos Estados Unidos. Por se tratar de doenças que possuem um alto índice de contaminação, estas levam a uma redução no número de pomares cultivados causando grande dano econômico aos produtores e as industrias relacionadas. Cada vez mais métodos para diagnóstico antecipado são necessários, tornando-se ferramentas importantes para a saudabilidade da lavoura e consequentemente do negócio. Algumas deficiências de solo como a falta de ferro e zinco apresentam sintomas visuais semelhantes nas folhas das plantas com o greening, enquanto que o cancro cítrico pode ser confundido com a verrugose, podendo levar a diagnósticos errôneos. Atualmente, somente testes bioquímicos são capazes de detectar especificamente o cancro cítrico e o greening, e consequentemente diferenciá-los das demais doenças e deficiências de nutricionais. Nesse trabalho, a técnica de espectroscopia por imagens de fluorescência em conjunto com os métodos de aprendizado supervisionado (algoritmos de classificação), foram utilizadas com o objetivo de identificar e discriminar as principais doenças que afetam a citricultura nos estados de São Paulo/Brasil e da Flórida/EUA. As amostras em estudo são cancro cítrico, verrugose, greening e deficiência de zinco. O objetivo principal é discriminar as doenças sem a necessidade de uma prévia avaliação ocular dos sintomas. Os resultados mostram que é possível utilizar a técnica de espectroscopia por imagens de fluorescência em conjunto a uma rede neural covolucional (AlexNet) para discriminação das doenças. O algoritmo apresentou uma elevada acurácia na classificação das amostras para as quatro doenças em questão quando comparado a outros algoritmos e um enorme ganho de tempo e redução de custo quando comparado ao método bioquímoco. |